Matter & Energy

share

Cells are able to transmit and process information by using molecular machines designed by evolution. These biochemical machines, usually proteins, change their structure and function in predictable ways based on input from the environment. These components of the cell can be organized into cascades, or branching chain reactions, in which the changes in one component are transmitted to a large number of components downstream.

share

In the scenic mountain ranges of Rjukan in Norway, tourists can go and see the evidence of work on using hydrogen as a fuel source. This location contains waterfalls that were harnessed for hydroelectric power in the 1920s. The energy generated from this plant would be used to split water into hydrogen and water using electricity through a process known as electrolysis, in an adjoining factory. Many researchers in Norway still think this is the way of the future, and that hydrogen can power any modern concern, from housing to industry.

share

Inspired by the high temperatures of the last few years, engineers from Stanford University have created a plastic-based material which can keep pour bodies cool. The idea is that it could be incorporated into clothing items, to cool the wearer’s body far more efficiently than current natural or synthetic fabrics. It is low-cost and makes the person that wears it feel nearly 4 degrees’ Fahrenheit cooler than if they wore pure cotton clothing.

share

The International Energy Agency estimate that around the world, 1.8 billion people live without electricity. In Africa, this is a particular issue. In an interview with CNBC, Ponmile Osibo from the African Private Equity and Venture Capital Association said: “The situation is Arica at the moment is quite significant, over 40 percent of the population does not have direct access to energy.”

share

For years, physicists have been trying to track down an elusive particle which, although predicted by the Standard Model of particle physics, has evaded detection until now. This week, the LHCb experiment at CERN’s Large Hadron Collider has definitively detected the presence of this particle, known as Xi CC ++.

share

We all love smart technologies. Smart phones, smart cars, smart houses, and so on. I have a device in my pocket that can relay my location by GPS, calculate the distance to my destination, count the number of steps it takes me to get there and displays the number of calories I burned; all of this while I stream cat videos from the internet. I can even control my smart house remotely from my phone, or have the doors to my smart car automatically unlock as I approach. It is glorious.

share

Forget to charge your music player before a run, or the battery life of your smartphone insufficient to get you through the day? For a generation that depends on electronic devices for their daily needs, the challenge of charging or powering gadgets begs for a sustainable solution.

share

Now the summer is in full swing, many of us enjoy getting out in the fresh air and making the most of the sunny weather. Sometimes this means sitting in the park whilst we’re on our lunchbreak and inevitably most of us turn to our phones to check our emails and social media whilst relaxing. This leads to the annoying situation where we try to read our phone screens in bright sunshine, and whilst this is definitely a situation that could be described as a ‘first world problem’ it’s one that has inspired researchers to try and come up with a solution.

share

Currently, there’s two main ways to access the energy needs that your household requires. Either connect to the national grid, or go off-grid and meet them through a combination of renewable energies. If you live off-grid, solar panels and wind turbines, or often a combination of the two, are currently the most popular choices. There’s many people who would love the chance to either generate their own electricity or use a more environmentally friendly choice but for various reasons, do not have the option of installing their own off-grid system.

share

Imagine never having to worry if your phone was fully charged before heading out to run or cycle your favorite trail, because you could charge it whilst exercising. Well, we could be literally one step closer to this reality thanks to a new technological advance which allows for the charging of electronic devices using something we all produce when exercising: sweat.

share

Many countries are on a mission to lead the way towards a future where 100% of our energy demands are met by renewable sources. New wind and solar farms are springing up apace, with countries keen to attract developers to install new wind and solar farms and manufacturers working hard to reduce the cost of their technology.

share

Imagine a new carbon neutral system of generating energy which has the potential to meet up to 40% of our global demand for power? The source might come as a surprise – our coastal estuaries where salt and fresh waters meet.

Scientists at Penn State University have created a system to harness energy along our coastlines, which early tests suggest could be very efficient indeed.

share

Over the last few decades, aerial robots, or drones, have been used in military, scientific and commercial fields. This has been mostly for searching and rescuing, for observation, mapping, inspection or maintenance. These drones consume energy from batteries. Due to the short battery life, scientists and engineers have been carrying out further analysis of the issue, with extensive research.

share

We always seem to be one step behind Mother Nature – using her materials as inspiration as we look for better and more environmentally friendly materials for the future.

One such material is the silk spun by spiders. Spider silk has long been known for its amazing strength, which gives it a wide range of applications. Humans have made use of this silk for thousands of years: it has been used by ancient Greeks to sew together wounds, by Aboriginals as fishing lines and even in the crosshairs of guns and telescopes up until as recently as World War Two.

share

Usually when we go for a run and work up a sweat, we would stop and take a layer off. MIT have developed a workout suit which instead responds to your body heat, opening and closing tiny flaps which react to humidity and allow heat and sweat to escape.

share

The Sun is the abundant renewable energy source that we as humans have not harnessed to its full potential. Solar radiation powers all of the surface phenomenon on Earth; it warms oceans to cause currents, heats up the air and drives the water cycle, and it sustains life on Earth. Plants take in solar radiation and use it to convert carbon dioxide and water into sugars. Herbivores feed on the plants and predators (humans included) eat the herbivores.

share

Atomic-force microscopy (AFM) is a high-resolution imaging technique that operates on the nanometer scale. Large molecules like DNA, proteins, and carbon nanotubes can be visualized in this manner. Of course, the instrumentation needed to look at really, really, really small objects usually take up a lot of space and are quite expensive; an education system can start at $10,000 USD and a fully expanded model for a materials science lab would cost upwards of $500,000+.

share

Since their discovery, carbon nanotubes (CNTs) have opened many avenues in material science. What makes them fascinating is their atomic structure, which dictates their electromagnetic and mechanical properties. They exhibit tremendous strength and conductivity while only being one atom thick. As they are a unique among other fullerene carbon structures, they are considered a new allotrope of carbon.

share

Where are toxic gases found?

Toxic gases in our environment can be silent killers. Whether these are from natural or man-made sources, the risk they pose is a serious one and the ability to be able to quickly and effectively identify these gases is vital to the safety of those who have been exposed. The danger with many of these toxic gases is that whilst also being deadly, they are often odorless and colorless, which make them very hard to detect without expensive and specialist equipment.

share

Matter can have positive and negative mass

Most of us, including non-scientists, have a basic knowledge of the laws of motion. We observe this every day, when we throw a ball to our child or drive our car down the street. We all understand that if we push something, it moves away from us. Whether or not we know that this is called Newton’s Second Law of Motion is irrelevant because the matter will continue to behave in this way regardless.

Pages