Bioengineering

share

Robots are increasingly accepted as the first line in automation, human-computer interfaces and even entertainment. However, they are often thought of in a limited way, as machines that could be designed to resemble humans, or body parts such as arms, designed to perform in a manner that is a variation on how a human would. Therefore, robots are often in a fixed shape with relatively limited dimensions of movement, articulation and manipulation.

share

Many wearable devices can now track your heart rate, steps, speed, balance, body temperature and sleep. Smart devices are definitely the future and will be used in people’s everyday lives. A new generation of brain-reading technology was created by the company NeuroSky, with the help of electroencephalography (EEG) biosensors.

share

When we think of mind reading, we may imagine a process by which an entity, perhaps aided by super-advanced technology, ‘listens in’ on our thoughts to capture or record them. However, thoughts and how they manifest in the brain are much more complicated than simple voices in our heads. Currently, the best of our scientific tools that come close to representing how it works are non-invasive techniques that can produce accurate 2D, 3D or 4D (i.e. ‘real-time’) images of a person’s brain and which specific regions are involved in thought formation.

share

The role of viral vectors as carriers, to effect and manipulate expression of certain genes, has done wonders in the realms of medicine and therapy. Experts are now considering the possibility of the very same virus vehicles to instead transport cargo to the neurons of the nervous system. This would help them to understand and treat neurodegenerative disorders and other diseases more effectively in the future.

share

Malaria, dengue, yellow fever, Zika and other mosquito-borne illnesses have wreaked havoc among humans in the past, and are continuing to do so by taking lives irrespective of age, gender or status. Among these, malaria, the deadliest of all, affects more than half the world’s population. Fortunately, innovations in biotechnology are attempting to provide solutions to eradicate these maladies.

share

Change blindness refers to the inability of our visual system to memorize details in scenery. An example of our brain’s inability becomes obvious when playing the game Spot-the-difference. It’s a game where you have two pictures that look absolutely identical, but in fact small details are different. Often one has to study the pictures for several minutes to discover the well-hidden differences.

share

The CRISPR system can be inserted into a scientist’s favorite cell or organism to eliminate a specific gene. CRISPR stands for Clustered Regularly Interspersed Short Palindromic Repeat. With tinkering, it can shut down transcription from a gene, edit a gene, and even theoretically at least, wipe out a species. CRISPR may have important medical applications, eliminating or repairing disease genes.

share

Synthetic biologists, like Eric Klavins and his colleagues at Washington State University, attempt to engineer living things to carry out machine functions, such as computing. This group recently reported advances in making computer circuits in living cells, known as biocircuits. These circuits have the advantage of avoiding some of the messiness of living systems.

share

New approaches to studying biological problems have been sprouting up like mushrooms. Genomics is the study of all the genes of an organism. Proteomics is the study of all the proteins of an organism. Transcriptomics is the study of all the RNA molecules made by an organism. Collectively, these new approaches are known as “omics.” They are novel in that they use techniques and computational biology software that can track thousands of molecules at once. In the past, scientists could only track a maximum of a few genes at a time.

share

The positive identification of a person has been identified as a need of our growing society for centuries, together with crime and law enforcement. First there was facial recognition and detection of walking style. Now, with our ever-increasing human population the need for “more accurate” identification appeared, including fingerprints and handwriting analysis, either to identify or to authenticate (e.g. bank transactions) certain individuals.

share

The brain is the most complex structure in our body. It has more than 200 billion neurons, which are all interconnected in specific orders. This creates synapses, which are the neurotransmitters. Between these synapses, signals are transferred and this in turn creates a circuit.

share

How many times have you gone to karaoke or heard someone sing along with a song on the radio only to sing the wrong lyrics? Don’t be ashamed, it’s more common than you think. When I first heard Elton John’s Tiny Dancer, without knowing the song’s title, I wondered about the lyric ‘hold me closer, Tony Danza’. Danza is a famous Italian-American actor and former boxer, but I was confused why this song was about him.

share

Cellulose is the world’s most abundant organic compound on Earth. It is estimated to make up 30% of the entire globe’s non-fossil organic carbon. It is used as a structural support biopolymer by plants to build up cell walls. You can find cellulose in many different forms, as humans have learned to exploit this naturally occurring material. We have learned to build houses and furniture from hardwood, make clothing out of cotton fibers, and press the material into thin sheets of paper.

share

Attempting to test the behavior of soft robotic systems beyond boundaries, a group of aerospace and mechanical engineering researchers led by Rob Shepherd have created electroluminescent “skin”. This, by replicating the model of cephalopods who possess natural skin stretchability and color changing organs for their protection as in camouflage, visual display and communication.

share

Crepitus is the noise your joints make when they move. Loud pops from your knees and knuckles are not the sounds of bones breaking. The pop is caused by cavitation; the rapid change in pressure of the synovial fluid that allows carbon dioxide to escape. A small cavity in the joint is formed and the bubble pops, giving the familiar cracking noise. In most cases, the sound is nothing to be concerned about. If the sound is accompanied by pain, that is a different situation.

share

Doctor visits are one of those things no one looks forward to. Taking time off work to get poked and prodded is never a fun experience. So what if you could take a pill that monitors all of your vital signs? Even better, what if all that data was transmitted to your doctor? The Massachusetts Institute of Technology and Harvard Medical School are trying to develop self-powered capsules that can monitor your internal health.

share

In March 2014, West Africa suffered the largest outbreak of the Ebola virus in history. The World Health Organization (WHO) reported over 28,000 cases of Ebola in Guinea, Liberia, and Sierra Leone with 11,000 deaths. Since March 2016, the infection had been contained enough to warrant a downgrade in its status. They WHO later issued an update showing that the major mode of transmission was through direct physical contact with sick individuals; even dead bodies could transmit the infection.

share

Facebook has finished running F8, their annual conference where they explore the potential technologies of the future. Many of us have been waiting for some pretty exciting revelations as to where they see the company heading in the future and as usual, they did not disappoint.

share

During my graduate studies, I once played a game with my lab mates called “hey, smell this”. I inevitably lost, as the acrid sulfur scent of thioanisole wafted up my nostrils. Though we’re trained as chemists not to inhale chemicals, there’s always that nagging curiosity to take a quick sniff. Most organic chemists can identify common solvents by scent, which is useful for avoiding incorrect reagents expensive reactions. Nevertheless, I’ve since avoided sniffing reagents around the lab.

share

No matter how many times it’s asserted, our brains are not computers. It’s not uncommon to compare the brain to the currently favored technology. Our brains have been compared to many different inventions throughout history, from clockworks to telephone switchboards. Our understanding of the brain has grown, and there are parallels between a brain and a computer. Both can learn and adapt, have short term and long term storage, and can be modified (known as neuroplasticity in the brain).

Pages